The Study of Misclassification Probability in Discriminant Model of Pattern Identification for Stroke
نویسندگان
چکیده
Background. Pattern identification (PI) is the basic system for diagnosis of patients in traditional Korean medicine (TKM). The purpose of this study was to identify misclassification objects in discriminant model of PI for improving the classification accuracy of PI for stroke. Methods. The study included 3306 patients with stroke who were admitted to 15 TKM hospitals from June 2006 to December 2012. We derive the four kinds of measure (D, R, S, and C score) based on the pattern of the profile graphs according to classification types. The proposed measures are applied to the data to evaluate how well those detect misclassification objects. Results. In 10-20% of the filtered data, misclassification rate of C score was highest compared to those rates of other scores (42.60%, 41.15%, resp.). In 30% of the filtered data, misclassification rate of R score was highest compared to those rates of other scores (40.32%). And, in 40-90% of the filtered data, misclassification rate of D score was highest compared to those rates of other scores. Additionally, we can derive the same result of C score from multiple regression model with two independent variables. Conclusions. The results of this study should assist the development of diagnostic standards in TKM.
منابع مشابه
Identification of climatic comfort areas Khuzestan province using multivariate analysis and spatial autocorrelation pattern with emphasis on architecture
Abstract In the history of humanity, human always has suffered all difficulties with effort to reach to comfort and well-being until the human provides a way to achieve the comfort. In the viewpoint of climate four elements have significant role in formation of human comfort and discomfort conditions that according to the climatic conditions in different areas, the type and effect of these el...
متن کاملتحلیل وضعیت آنژین صدری بر اساس احتمالات طبقه بندی نادرست عامل خطر سیگار در مطالعه قند و لیپید تهران، 79-1378
Misclassification of disease status and risk factors is one of the main sources of error in studies. Wrong assignment of individuals into exposed and non-exposed groups may seriously distort the results in case-control studies. This study investigates the effect of misclassification error on odds ratio estimates and attempts to introduce a correction method. Data on 3332 men aged 30-69 years fr...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملDiscriminative Role of Bullying and Moral Intelligence in Suicide Probability among High School Students of Sanandaj City in the 2017-2018 Academic Year: A Descriptive Study
Background and Objectives: Bullying and moral intelligence are considered as important factors affecting the probability of suicide among students. Therefore, The aim of this study was to determine the role of bullying and moral intelligence as a predictor of suicide probability among students. Materials and Methods: This study was a descriptive study. The statistical population included se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016